
Supporting Flexible Reification of Design Patterns ∗

Wuwei Shen
Department of Computer Science
Western Michigan University

Kalamazoo, Michigan 49008, USA

Dae-Kyoo Kim
Department of Computer Science and Engineering

Oakland University
Rochester, MI 48309, USA

Jian Liu Chen Zhao
Institute of Software, Chinese Academy of Sciences

Beijing 100190, China

Abstract

Design patterns have been widely accepted as a so-
lution for solving recurring design problems in object-
oriented development. Reifications of design patterns
can vary from one development environment to an-
other, and use of inappropriate reifications may im-
pose a serious threat to quality of a software system.
In this paper, we propose an approach to applying the
profile mechanism in reifying a design pattern. Cen-
tral to this approach are stereotypes that are defined in
a profile and used to represent different roles in a de-
sign pattern. Developers can apply these stereotypes in
their application model when design patterns are used.
The advantage of the profile mechanism is that devel-
opers can 1) define their own reification of a pattern
in a profile based on a specific software system, and 2)
find errors in an application model via the conformance
checking of the model against the profile. More impor-
tantly, we apply our existing tool called ICER, which is
based on the profile mechanism, to provide automatic
checking for the application of design patterns. To il-
lustrate the advantage of the profile mechanism sup-
ported by ICER, we show the different reifications for
the Observer pattern. Last, experimental results show
that ICER does not suffer from the scalability problem
as the size of an application model increases.

∗This work was supported in part by National High Tech-
nology Research and Development Program of China (863 Plan)
under grant No. 2009AA010313. Also, part of the work was
done during the first author’s sabbatical leave at UNU-IIST and
it was supported by the HTTS project funded by Macau Science
and Technology Development Fund.

1 Introduction

Design patterns, as a technique to reuse success-
ful designs and architectures, have demonstrated great
success in supporting adaptability and extensibility
during software development. Design patterns not only
provide good generic solutions to recurring problems
but also increase the adaptability and extensibility of
a software system. In practice, when these patterns
are applied to software systems, software developers
are left with plenty of room for reification when mod-
eling a software system. As stated by Coplien [1], “the
structure of patterns are not themselves solutions, but
they generate solutions”. The solutions generated by
a pattern can vary, depending on many factors dur-
ing software development. Sometimes, a reification of
a design pattern can be a viable solution in one devel-
opment environment while the reification cannot be in
another environment.

For instance, the Observer pattern can be reified
based on [2], where the relationship between classes
Observer and ConcreteObserver is reified by inher-
itance. But, if an implementation language does not
support multiple inheritance, the inheritance solution
becomes infeasible when a concrete observer class has
another parent class in the model. To implement a soft-
ware system in an implementation language which only
supports single inheritance, developers should make
some changes for the reification of the Observer pat-
tern accordingly.

Another factor that can affect the application of a
design pattern is the characteristics of an application.
Sometimes, a design pattern cannot work well for a
certain development environment; and so the modifi-
cation of the pattern should be made. For instance,
the Visitor pattern proposed by [2] is quite effective

2010 Asia Pacific Software Engineering Conference

1530-1362/10 $26.00 © 2010 IEEE

DOI 10.1109/APSEC.2010.24

127

2010 Asia Pacific Software Engineering Conference

1530-1362/10 $26.00 © 2010 IEEE

DOI 10.1109/APSEC.2010.24

127

in handling a group of elements in an object structure
when new operations are added to a software system.
But if a software system keeps adding new elements
to the object structure, all the visitor classes will be
changed to include a set of new operations, each of
which deals with a newly-added element. Obviously,
the reification of the Visitor pattern suggested by [2]
is not a feasible solution for a software system which
constantly changes its structure. Consequently, reifica-
tions of the variations should be created.

Thus, the reification of design patterns is not unique.
Even when developers sometimes know a correct reifi-
cation of a design patterns, they can still inadvertently
invite some errors during the application of the design
pattern, especially when a software system becomes
complex. Helping developers detect errors based on the
reification of a design pattern is valuable in supporting
design patterns. But, any support for reifying a design
pattern should consider the following issues. Firstly,
as important participants, software developers are fa-
miliar with all aspects of the software system being
developed. So, they should propose the factors which
can have impact on the application of design patterns.
Based on these factors, it is the developers who choose
their correct reification of a design pattern. Thus, how
developers represent a pattern reification is the first
issue to be resolved. Secondly, after giving an appro-
priate reification of a design pattern, developers can
apply the reification in an application model. Thus,
the relationship between a pattern reification and the
model where the reification is applied is another issue
to be addressed.

Fortunately, the profile mechanism in UML [3] pro-
vides a method of solving the above issues. A profile
which belongs to the metamodel layer (i.e. the M2-
layer) can be applied by developers in giving their own
reification of a design pattern. Stereotypes in a pro-
file are used to define different roles in a design pat-
tern while the Object Constraint Language (OCL) [4]
is used to represent additional constraints to comple-
ment the reification of a design pattern. According to a
profile, an application model should stereotype model
elements which participate in the pattern. As a result,
the application model establishes an instance-of re-
lation between the profile and itself.

The instance-of relation provides a solid founda-
tion for tool support. It is the instance-of relation
that allows us to find whether an application model
conforms to a profile via the conformance checking. We
have developed a tool called ICER which supports con-
formance checking based on the IBM Rational Rose. In
this paper, we apply the ICER tool in validating the
conformance of design patterns.

This paper is organized as follows. Section 2
presents the problem statement followed by the ICER
solution. Section 3 demonstrates how the Observer
Pattern can be reified in two different ways. Section
4 discusses the scalability issue of ICER using some
experimental results. Last, section 5 gives some dis-
cussions on related work and draws a conclusion.

2 ICER Solution

In this section, we first present a problem and then
show how ICER attacks this problem.

2.1 Problem Statement

Many approaches [5, 6, 7, 8, 9] provide a set of
pre-defined constraints to enforce the error detection.
These ad-hoc methods do improve the quality of a soft-
ware system. For example, in the observer pattern [2],
class ConcreteSubject requires an operation called Set-
State. This can be implemented as a constraint on
class ConcreteSubject. Let us consider a clock applica-
tion where there exists a digital clock that extends a
clock and the digital clock displays the current time in
the digital format. So, classes ClockTimer and Digital-
Clock are designed to represent and show the current
time respectively. Obviously, we can apply the Ob-
server pattern to this example, as shown in Figure 1
where classes Observer and Subject are introduced as a
parent class. However, class ClockTimer, as a concrete
subject in Figure 1 fails to provide operation SetState.
This kind of errors can be easily detected by the tools
supporting the above requirement.

Figure 1. A class diagram for a clock applica-
tion.

However, there exist some problems in these ad-hoc
methods because they seriously undermine the flexi-
bility required in software development. Let us as-
sume the following situation after operation SetState

128128

was added by a C++ team. The diagram, which is
a correct model, was given to a Java team that de-
veloped the same application in the Java environment.
According to Java, the Java team must remove mul-
tiple inheritances for any class. Namely, class Digital-
Clock cannot have two parent classes. Otherwise, the
generated program cannot be compiled by a Java com-
piler. Obviously, the reification of the Observer pattern
is affected by the implementation environment. A tool
supporting the ad-hoc method becomes hard to adjust
to a new constraint rule unless the tool is recompiled
and generated after revising the existing constraint.

As a general-purpose modeling language, UML does
not precisely give guidelines of how to apply its dia-
grams such as class diagrams in a development pro-
cess. Thus, the constraints on UML (class) diagrams
designed in a development process are decided by many
factors such as the implementation platform. So the
lack of extension and adaptation of a fixed set of con-
straint rules imposed on certain development environ-
ment can be of little value to software developers who
choose a different environment.

While developers sometimes know what a valid
model should be designed, they still invite some in-
consistencies/errors when a software system becomes
more and more complex. While a Java team might eas-
ily identify the error if class DigitalClock has another
parent class in Figure 1, it becomes very hard for devel-
opers to find such errors in a model with more than sev-
eral hundreds of classes and relationships. Hence, the
tool-based support of detecting inconsistencies/errors
in UML models has significantly increased the success
of complex software projects. However, the most chal-
lenging problem is how a tool can help developers in-
troduce and validate constraints for a specific software
system.

2.2 ICER Solution

The four-layer architecture provides a viable means
to solve the above issues and also lays a foundation for
the ICER tool. UML is based on a four-layer meta-
modeling architecture where each successive layer is
labeled from M3 to M0, which are usually named the
meta-metamodel, metamodel, model, and user objects
respectively. A model at the Mi layer can be regarded
as an instance of a model at the Mi+1 layer. The UML
metamodel belongs to an M2-layer model in the four-
layer architecture. Also we call an M1-layer model an
application model in the remaining text. So any UML
application model can be regarded as an instance of
the UML metamodel.

A profile is an important mechanism to extend the

UML metamodel. Central to a profile is the stereo-
types that brand model elements for special purpose.
The advantage of the profile mechanism is that the
restrictions on how a profile extends the UML meta-
model is purely additive and thus most UML tools can
support profiles easily. Since developers should be pro-
vided with a method to introduce their constraints on
some model elements, stereotypes are a viable means to
brand these model elements to enforce new constraints.

According to the UML specification [3], stereotypes
can have a tag definition and constraint. Both a tag
definition and stereotype apply to all model elements
branded by that stereotype. We choose the Object
Constraint Language (OCL) as a language to represent
constraints on a stereotype. Constraints on a stereo-
type impose semantics and restrictions on its instances.
When an application model includes the stereotypes,
the instance-of relationship is implied and the confor-
mance checking ensures all constraints given in a profile
be satisfied by an application model.

Figure 2. Example of a UML profile.

Let us back to the clock example to illustrate how
a profile can be applied to support “class Concrete-
Subject requires an operation called SetState”. While
readers might guess how the diagram in Figure 1 is
designed based on the standard observer pattern dia-
gram given in [2], a profile is an excellent method ex-
plicitly showing how an original pattern is applied to
an application model. For clarity, we call each model
element in an original pattern a role. In general, each
role required in an original pattern is introduced as a
stereotype in a profile. Therefore, an instance of the
stereotype plays the role in an application model of this
pattern. For instance, role ConcreteSubject, which rep-
resents the subjects observed in the original observer

129129

Figure 3. A Profile for the observer pattern.

pattern, is introduced by a stereotype ObservedSubject
in Figure 2(a). A tag definition treeTop is introduced
to shown whether an instance of ObservedSubject plays
role Subject in the original Observer pattern. There-
fore, it is not necessary to introduce a new stereotype
for role Subject. In the clock example, class Clock-
Timer in Figure 1 actually represents objects that are
observed. So, in the application model of the observer
pattern shown in Figure 2(b), class ClockTimer is an
instance of stereotype ObservedSubject. In such a way,
the relationship between a model element such as class
ClockTimer and its corresponding role such as Con-
creteSubject in an original pattern is obviously shown.

Likewise, in the original observer pattern, role Con-
creteSubject has two kinds of operations, i.e. role
SetState and role GetState. They are represented by
stereotypes SetStateOp and GetStateOp respectively in
the profile shown in Figure 2(a). The association be-
tween ObservedSubject and GetStateOp represents an
instance of ObservedSubject can have an operation that
instantiates GetStateOp. The real number of the oper-
ations is given by the multiplicity of the association at
the end of GetStateOp. In this case, the number could
be zero or any integer value. So does the association
between ObservedSubject and SetStateOp.

In the clock application, we concentrate on the ob-
served timer ObservedSubject shown in Figure 2(b).
Class ClockTimer has three methods that are an in-
stance of GetStateOp. Once an application is given, an
instance-of relationship between the application model
and its profile can be established as shown in Figure 2.

However, the constraints given in a class diagram is
sometimes not enough. For example, in the original
observer pattern, method SetStateOp is only required

for class ConcreteSubject that is a child class of Subject.
This constraint cannot be given by the multiplicity of
the association between ObservedSubject and SetSta-
teOp in Figure 2 because stereotype ObservedSubject
does not distinguish whether an instance of Observed-
Subject is a root class in a inheritance hierarchy or not.
To this end, we write the following OCL constraint:

Stereotype Context ObservedSubject
inv: not self.treeTop implies (self.getStateOp → size()
> 0 and self.setStateOp → size() > 0)

The conformance checking checks not only con-
straints given in a class diagram such as multiplic-
ity but also OCL constraints such as the above one.
Obviously, class ClockTimer, as an instance of stereo-
type ConcreteSubject, does not satisfy the above con-
straint because class ClockTimer has no instance of
SetStateOp-class ClockTimer’s size() is zero. Thus,
the conformance checking reports a warning message
on class ClockTimer.

3 Different Reifications of the Observer
Pattern

In this section, we use the Observer pattern to il-
lustrate how the solutions of the Observer pattern can
be reified in two profiles based on two implementation
platforms. The profiles for the rest of the design pat-
terns given by GoF are available at [10].

3.1 The First Reification of the observer
pattern

The observer pattern [2] is a commonly used behav-
ioral pattern that defines a one-to-many dependency

130130

between subject and observer objects. When a sub-
ject changes its state, all its observer objects are no-
tified and updated accordingly. Many research works
[11, 12, 13, 14] follow the description given in the GoF
Book [2] and reify the observer pattern as follows. The
generalization relationship between Observer and Con-
creteObserver is reified as inheritance as suggested.
More specifically, the Observer and Subject are im-
plemented as abstract classes while the ConcreteOb-
server and ConcreteSubject are concrete classes that
inherit from the abstract classes Observer and Subject
respectively. There is one unidirectional association
from Subject to Observer while another unidirectional
association connects from ConcreteObserver to Con-
creteSubject.

Based on this particular realization, we design a
UML profile which introduces sixteen stereotypes, each
of which plays one role in the observer pattern. Table
1 summarizes the stereotypes1 defined in the profile.
The profile for the observer pattern is shown in Figure
3. Any model intended to apply the above realization
at the application level should be an instance model
of the profile. In this profile, stereotypes Observer and
ObservedSubject play the roles Observer and Subject
respectively. In order to reduce the number of stereo-
types in a profile, we define a tag treeTop in stereotype
Observer to differentiate whether an instance of Ob-
server or ObservedSubject is abstract or concrete. If
the value of treeTop in an instance of Observer is true,
then the instance is an abstract Observer class at the
application level. Otherwise it is a concrete Observer
class. Likewise, treeTop is introduced as a tag defini-
tion for stereotype ObservedSubject.

Stereotypes AttachOp, DetachOp, NotifyOp, Upda-
teOp, GetStateOp, and SetStateOp are introduced as
operations required in different stereotypes. For the
same reason, stereotypes ObservedState and Subject-
State represent an attribute required in stereotype Ob-
server and ObservedSubject respectively. However, the
associations such as the one between Subject and Ob-
server in the observer pattern should be enforced by
several stereotypes. Based on the UML metamodel,
the associations added between stereotypes in the pro-
file should specialize the usage of the associations of the
UML metamodel. Stereotype aSubjectObserver repre-
sents an association which is required to connect an
abstract class ObservedSubject and an abstract class
Observer. In order to represent this connection, we in-
troduce stereotype SOS and SOO that extends meta-
class AssociationEnd. Stereotype SOS denotes one

1Here we still use the metaclasses in UML v1.5 to clarify the
roles played by a stereotype such as Operation. But we can
switch to UML 2.0 easily.

Figure 4. A UML Model for the Clock Applica-
tion Based on the observer pattern.

end of the association aSubjectObserver at stereotype
ObservedSubject while stereotype SOO represents the
other end at stereotype Observer. More details about
the stereotypes can be found at [10].

While a profile provides some constraints such as
the multiplicity for an association, there exist some
constraints that cannot be represented graphically in
the profile. We use the OCL to express these con-
straints. To illustrate how OCL is applied, we only
discuss one constraint on stereotype Observer. Readers
are referred to [10] to find all OCL constraints related
to the profile shown in Figure 3. The constraint speci-
fies that a concrete class in the hierarchy must have one
association end connecting to aObserverSubject and at
least one state observed by itself (ObserverState) and
it is shown as follows:

Context Observer inv:
not self.isAbstract implies (self.oSO →

size()=1 and self.sOO → size()=0 and
self.observerState→size()>0)

The observer pattern can be applied to many ap-
plications. For example, one application requires two
types of clocks, digital clock and analog clock, to rep-
resent the time in a digital and analog format respec-
tively. Both clocks monitor a real timer. Applying
the Observer profile to this application, we introduce
two concrete Observer classes, i.e. DigitalClock and
AnalogClock, instantiated from the Observer stereo-
type with the tag treeTop set to false. Similarly, one
concrete Subject class, i.e. ClockTimer, which is an in-
stance of the stereotype ObservedSubject with the tag
treeTop set to false, is introduced. Also, two abstract

131131

Table 1. The stereotypes and their declaration.
Stereotype Base Metaclass Tag Description
Observer Class treeTop:Boolean An instance (of this Stereotype) plays Observer

role
ObservedSubject Class treeTop:Boolean An instance plays Observed Subject Role

AttachOp Operation An instance is a method in an
instance of abstract ObservedSubject

DetachOp Operation An instance is a method in an
instance of abstract ObservedSubject

NotifyOp Operation An instance is a method in an
instance of abstract ObservedSubject

UpdateOp Operation An instance is a method in an instance of
abstract Observer

GetStateOp Operation An instance is a method in an instance
of concrete Observer

SetStateOp Operation An instance is a method in an instance of
concrete Observer

ObserverState Attribute An instance is an attribute of an
instance of concrete Observer

SubjectState Attribute An instance is an attribute of an
instance of concrete ObservedSubject

aSubjectObserver Association An instance connects to an instance of ab-
stract Observer and abstract ObservedSubject

SOS AssociationEnd An instance is the end of an
instance of aSubjectObserver on an
instance of abstract ObservedSubject

SOO AssociationEnd An instance is the end of an
instance of aSubjectObserver on
an instance of abstract Observer

aObserverSubject Association An instance connects to an instance
of concrete Observer and
concrete ObservedSubject

OSS AssociationEnd An instance is the end of an instance of
aObserverSubject on an instance of
concrete ObservedSubject

OSO AssociationEnd An instance is the end of an
instance of aObserverSubject on
an instance of concrete Observer

classes, each of which is instantiated from the MySub-
ject and MyObserver, are added. We also add a uni-
directional association from the class MySubject to the
class MyObserver, a unidirectional association from the
class DigitalClock to the class ClockTimer, and a unidi-
rectional association from the class AnalogClock to the
class ClockTimer. The class digram resulting from this
application is shown in Figure 4. With the help of the
ICER tool, we can check whether the class diagram is a
correct instance of the profile. In other words, the dia-
gram realizes the Observer pattern based on the above
reification. The details about the checking performed

by the ICER tool will be discussed in the next section.

3.2 The Second Reification of the Ob-
server Pattern

However, using inheritance to realize the relation-
ship between an abstract Observer class and a concrete
Observer class is not applicable in some cases. For in-
stance, if an implementation language (e.g. Java) does
not support multiple inheritance, a concrete Observer
class cannot inherit from an abstract Observer class
when the concrete class has already a parent class.

132132

Figure 5. Another Profile for the Realization of the observer pattern.

Thus, one of the solutions is to have a concrete Ob-
server class copy all the operations required by the ab-
stract Observer class in the observer pattern and con-
nect a unidirectional association from an abstract Sub-
ject class to the concrete Observer class itself. Obvi-
ously, in this realization, the (concrete) Observer class
takes the responsibility of an abstract Observer class
in the original observer pattern.

To realize the observer pattern using concrete Ob-
server classes without any abstract Observer class, we
define another profile in Figure 5. All the differences
between the two profiles are marked with a circle. In
terms of the number of stereotypes, this profile has the
same number of stereotypes as the first profile in Sec-
tion 2.1. However, the tag treeTop associated with the
stereotype Observer required in the first profile is no
longer necessary in the second profile because there is
no generalization between the Observer classes.

Furthermore, in order to realize the associations
from a concrete Observer class, we demand that in the
second profile there be two unidirectional associations
related to an Observer class. While the second profile
still uses the first profile’s stereotyped class names rep-
resenting the associations and their association ends,
the multiplicities for the associations between classes
OSO and Observer and class SOO and Observer are
changed. Instead of the value of {0, 1} required for
the multiplicity at the end of OSO and SOO class in
the first profile, we require the value to be 1 for the
multiplicity for the association end at class OSO and
SOO, shown in Figure 5. Thus the multiplicity re-
quires that each stereotype Observer ’s instance have
two association ends so that the instance connects to
two different associations. Another difference is that
the multiplicity at the stereotype ObserverState end for

the association between ObserverState and Observer
is 1..? instead of 0..?. The reason is that each Ob-
server ’s instance, which is a concrete observer class at
the application level, must have at least one Observer-
State feature role. Finally, we give the OCL constraint
not(self.isAbstract) to require that there be no ab-
stract Observer class in the realization.

As an example of a realization of the Observer profile
in Figure 5, we apply the same example of the clock
application to design a class diagram shown in Figure
6. The class diagram is a valid instance of the second
profile. In this realization, the model has one concrete
observer object, i.e. DigitalClock, to monitor a timer
object. Also, the concrete observer requires that it not
only define the operation Update, which is an instance
of the stereotype UpdateOp, but also implement the
operation.

Now we show how ICER reports errors. Assume a
UML class diagram shown at the top of Figure 7 that
is designed based on the profile shown in the bottom of
Figure 7 (dark area). To specify why the UML diagram
does not conform to the profile, we use a dotted dash
line ending with an arrow to represent an Instance-of
relationship between a model element and its corre-
sponding meta-element. For the sake of clarity, we only
give some related Instance-of relations for classes and
their associations while the rest of relations between
classes and their features are skipped.

In Figure 7, class DigitalClockB is an instance of
the stereotype Observer, shown by 3©. Since class
DigitalClockB is not abstract, the OCL subexpression
self.oSO → size() = 1 in the third OCL invariant for
Observer requires the number of the instances of Ob-
server be equal to one, which is satisfied, shown by the
Instance-of relation 1© in Figure 7. However, the OCL

133133

Figure 6. A UML Model for the Clock Application Based on the Profile in Figure 5.

subexpression self.sOO → size() = 0 in that OCL
invariant is not satisfied, shown by the Instance-of re-
lation 2© in Figure 7, because there is a unidirectional
association from class MySubject to class DigitalClockB
via the association end whose role name is SOO. Ac-
tually, the main reason of the error in the UML class
diagram is that there is no abstract base class in the hi-
erarchy of observer classes in the class diagram, which
is required by the profile.

4 Experimental Results

To investigate the scalability issue of ICER , we
studied the performance of ICER from the following as-
pect: to evaluate how the size of an entire model affects
the performance of ICER. The evaluation of ICER was
based on applying various design patterns that include
the Factory Method pattern, the Decorator pattern,
the Adapter pattern, the Prototype pattern, the State
pattern, and the Composite pattern simultaneously to
the UML metamodel. The UML metamodel, named
UML2-Super-MDL-041007.mdl, was downloaded from
[3].

To investigate the impact of the size on the perfor-
mance, we created three instance packages with differ-
ent number of metaclasses. Namely, we wrote a pro-
gram that randomly chose 100, 200, and 300 meta-
classes and their relationships from the UML meta-
model and kept them in the three models respectively.
The total sizes of these three models are 1697KB,
3070KB, and 3802KB respectively. Since the above
three models have the same profile package and in-
stance package but different sizes, we ran ICER on
these three models to see the impact of the size of a
model on the performance of ICER. Our evaluation
is based on the two kinds of checking: graphical con-
straint checking and OCL constraint checking. We in-
strumented the code into the ICER’s original code to
inspect the time for the graphical constraint checking

and we wrote another program to monitor the time to
check all OCL constraints.

To evaluate both kinds of constraint checking, we
ran ICER on each model 50 times and all measure-
ments performed on Dell XP 1.99GHz CPU and 1 GB
RAM. The total times to validate the instance-of rela-
tion in the three models are 810ms, 807ms, and 809ms.
From these empirical results, we conclude that the per-
formance of ICER is not related to the size of an entire
model when a profile and an instance package are given.

5 Related Work and Conclusion

Supporting design patterns has drawn great atten-
tion in the community. The work by France et al. [5]
proposed an extension of the UML that specifies a de-
sign pattern at the metamodel-level. A conformance
relation is established between a pattern specification
at the metamodel-level and an application model at
the model-level. However, using an UML extension re-
quires users to learn the extension and its supporting
tools which usually do not tie with other CASE tools.
The advantage of the profile mechanism proposed in
this paper is that it does not take any extra effort for
developers to learn the mechanism. More importantly,
like any class model, a profile can be regarded as a
package which consists of class diagrams. Also, the tool
support for design patterns can be easily built based on
UML CASE tools.

Another significant work in using UML extension
mechanisms to define frameworks and design patterns
is the UML-F by Fontoura et al. [6]. The UML-F is a
UML profile for developing and adapting frameworks to
support architecture reuse. The UML-F comprises of
four layers of interrelated tags – tags for patterns, tags
for construction principles, basic modeling tags, and
presentation tags. Sanada and Adams [15] extended
the UML-F by introducing additional tagged values
and stereotypes. Also, unlike the UML-F, they used

134134

Figure 7. Instance-of Relationship Between a Model and Its Profile.

UML Collaborations to represent patterns. However,
the use of Collaborations results in more complexity in
designs over the UML-F.

Mak et al. [16] proposed an extension to UML
1.5 to precisely model design patterns. In brief, they
made use of the meta-modeling techniques to model
the structures of pattern leitmotif by using collabora-
tion diagram to specify the collaboration among Mod-
elElements as well as a set of OCL well-formed rules.
It is not clear how a tool can support their technique.
We argue, without the application of the profile mech-
anism, it would be hard to build the automatic support
which can be easily tied with most existing UML CASE
tools.

Dong and Yang [7] propose three stereotypes, each
of which extends Class, Operation and Attribute meta-
class in the UML metamodel. When used for a specific
pattern, these stereotypes are decorated with the name
of pattern elements, assuming the name is known.
These approaches basically define a set of stereotypes
to be used in designs for quality attributes such as ex-
tensibility and traceability. However, none of them is
capable of validating the correctness of designs to the
profile applied. Our approach together with the aid of
the ICER tool not only supports the quality attributes,
but also allows one to check the validity of a design to
a profile.

A new visual modeling language called DPML [14]
has been proposed to represent and apply design pat-
terns. But since DPML introduces some new nota-
tions such as hexagon and inverted triangles, users of
DPML must be familiar with these notations. Like-
wise, the application of design patterns also closely ties
with their DPTool. However, the ICER tool can accept
a model represented in the XML format so it is open
to any kind of UML CASE tools.

The calculus of refinement of component and object-
oriented systems, known as rCOS, is a framework [17]
that supports component-based software development
based on a set of refinement rules via the graph trans-
formation [18]. Qian et al. [8] investigated how de-
sign patterns and refactoring rules are used in a formal
method by formulating and showing them as refine-
ment laws in rCOS.

The application of design patterns allows successful
design solutions to be reused in software systems; and
because they are usually applied to different develop-
ment environments, the reification of design patterns
is not unique. Developers should be provided with an
ability to give their own reification of design patterns.
In this paper, we have shown that the profile mecha-
nism is the solution to define a reification of a design
pattern. As an example, we demonstrated how to apply
a profile in reifying a design pattern via the Observer

135135

pattern and the Visitor pattern. We provide profiles
for most GoF design patterns at [10], and developers
are encouraged to apply these profiles as a template
to software development when a different reification is
required.

The profile mechanism promotes the implementa-
tion of a tool to support design patterns. Applying
the instance-of relation, the ICER tool can check
whether an application model is designed based on de-
sign patterns via the conformance checking. Since the
ICER tool uses the XML format of UML models as in-
put, it can be applied to many UML CASE tools which
can export the XML format. Even for those tools which
do not support some features such as OCL, users of the
ICER tool can still use those tools after they manually
add the missing information such as OCL constraints
to the corresponding model elements via the XML tags.

Class diagrams are arguably the most widely used
object-oriented modeling diagram today. So, the ICER
tool supports the conformance checking of a class
model and a profile when applying some design pat-
terns. In the future, we can extend the ICER tool
to read some other UML diagrams such as sequence
diagrams to support the dynamic aspect of a model
when design patterns are used. But our overall expe-
rience has shown the promise of the ICER tool when
it provides users with the flexibility in reifying design
patterns.

References

[1] J. O. Coplien, Software Pattern,. New York: SIGS
Management Briefings, SIGS Books, 1996.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1994.

[3] OMG UML Superstructure Specification, version
2.0, 05-07-04. Object Management Group.

[4] Jos B. Warmer, Anneke G. Kleppe, The Ob-
ject Constraint Language: Precise Modeling With
UML. Addison-Wesley, 1998.

[5] R. France, D.-K. Kim, S. Ghosh, and E. Song, “A
UML-Based Pattern Specification Technique,” in
IEEE TSE, vol. 30 of No. 3, pp. 193–206, March
2004.

[6] M. Fontoura, W. Pree, and B. Rumpe, The UML
Profile for Framework Architectures. Addison-
Wesley, 2002.

[7] J. Dong and S. Yang, “Extending UML To Visu-
alize Design Patterns In Class Diagrams,” in Pro-
ceedings of the Fifteenth SEKE, (California, USA),
2003.

[8] L. Quan, Z. Qiu, and Z. Liu, “Formal use of design
patterns and refactoring,” in ISoLA, pp. 323–338,
2008.

[9] W. Shen, K. Wang, and A. Egyed, “An efficient
and scalable approach to correct class model re-
finement,” in IEEE TSE, vol. 35, pp. 515–533,
July/August, 2009.

[10] ICER Application: GoF Design Patterns.
http://www.cs.wmich.edu/~OODA/patterns/

index.html.

[11] A. Guennec, G. Sunye, and J. Jezequel, “Pre-
cise Modeling of Design Patterns,” in Proceedings
of the 3rd Inter. Conf. on (UML), (York, UK),
pp. 482–496, Springer-Verag, LNCS 1939, 2000.

[12] A. H. Eden, Precise Specification of Design Pat-
terns and Tool Support in Their Application. PhD
thesis, University of Tel Aviv, 1999.

[13] A. Lauder and S. Kent, “Previse Visual Specifi-
cation of Design Patterns,” in Proceedings of the
ECOOP’98, vol. 1445 of LNCS, pp. 114–134, 1998.

[14] D. Mapdlsden, J. Hosking, and J. Grundy, “De-
sign Pattern Modelling and Instantiation Using
DPML,” in Proceedings of the 40th International
Conference on Tools Pacific, 2002.

[15] Y. Sanada and R. Adams, “Representing De-
sign Patterns and Frameworks in UML, Towards
a Comprehensive Approach,” Journal of Object
Technology, vol. 1, no. 2, 2002.

[16] J. K. H. Mak, C. S. T. Choy, and D. P. K. Lun,
“Precise modeling of design patterns in uml,” in
Proceedings of the 26th ICSE, pp. 252 – 261, IEEE
Computer Society, 2004.

[17] Z. Chen, Z. Liu, A. P. Ravn, V. Stolz,
and N. Zhan, “Refinement and verification
in component-based model-driven design,” Sci.
Comput. Program., vol. 74, no. 4, pp. 168–196,
2009.

[18] L. Zhao, X. Liu, Z. Liu, and Z. Qiu, “Graph trans-
formations for object-oriented refinement,” For-
mal Asp. Comput., vol. 21, no. 1-2, pp. 103–131,
2009.

136136

