
Model Checking a Secure Hypervisor

Sunlv Wang, Jian Liu, Qiuping Yi, Xian Zhang
Institute of Software, Chinese Academy of Sciences, Beijing, P.R. China, 100190

liujian@iscas.ac.cn

Abstract—Hypervisor is a piece of platform-virtualization
software that allows multiple operating systems to run on a host
computer concurrently. CASMonitor, short for CAS Virtual
Monitor, is a secure, high-assurance hypervisor prototype,
which aims to level B3 or higher of TCSEC standard. This
paper reports our experience of employing model checking
method to verify some design properties of CASMonitor,
such as isolation, mediated sharing, communication between
separated virtual machines and source control policy. We
show how to specify design architecture of CASMonitor with
Spin PROMELA language and verify the above important
properties to meet system security request.

Keywords-Model checking; Secure operating system; Hyper-
visor; Chinese-Wall policy;

I. INTRODUCTION

CASMonitor [7] is a secure and high assurance hypervisor
prototype derived from the open source Xen hypervisor,
whose target is the level B3 or higher level of TCSEC
standard [3]. CASMonitor can be regarded as micro-kernel
which encodes in about 55000 loc of C/ASM, divided into
domain control, scheduling and security control modules etc.

Spin is one of the most popular model checking tools
that used for formally verifying the design properties of
systems. This paper reports our experience on using Spin
to automatically verify design model of CASMonitor. In
our model, we formally define the main functions of major
modules in CASMonitor, including scheduling, hypercall,
memory management, event channel, hardware interface,
security control and some user applications. In the security
controlling module, a Chinese-Wall control policy [2] is
equipped, which is used as labels interpreted to decide which
domains can co-exist on the same system.

This paper is organized as follows. In Section 2, we
describe the CASMonitor together with its Spin model. In
Section 3, we discuss the specification and verification of
the important properties including Chinese-Wall correctness,
consistency and isolation. In Section 4, we show the related
work, and finally conclude this paper.

II. THE MODEL

The following subsections explain the details of five
subsystems in CASMonitor respectively, which are domain
control subsystem, scheduling, Memory, Hypercall, Chinese
Wall. For each subsystem, we first give the description of
its main functions in CASMonitor, then we give the Spin
model.

A. Domain Control

Domain is the most important concept in CASMonitor,
which can be regarded as a ”super process” in classical
operating system to control the life-cycle of guest OS and
hold resources for its running. Domain is implemented by
a piece of code and described by a data structure domain
descriptor [5]. A descriptor structure contains an id which
is the unique identifier of a domain, a level of privileges
that used to control the memory access and scheduling [1],
a context containing the state data, status information for
scheduling, and a set of other specific data (for example,
event channel for communication and secure identifier for
access control etc).

Besides domain, the interrupt handler is a special
control-flow, which manages the soft and time interrupt and
interaction between hyperviosr and domain.

Spin Model. We use the Spin processes to model the
domain and other control-flows. The Spin processes can
execute interleavedly to simulate actual execution. In
this setting, each control-flow such as domain is given a
unique Spin process id which is the context recorded in
descriptor. Each descriptor is represented by a PROMELA
data-structure contains the Spin process id, the scheduling
information (defined in Section II-B), the message queue,
the event channel for communication, specific data for
Chinese-Wall policy, and an array to store local data.

B. Scheduling

As we mentioned before, CASMonitor is an Xen based
hypervisor architecture and the scheduling is the same as
Xen. In this paper, the round rubin algorithm is selected to
model as in Xen 2.0.

Spin Model. Scheduling is activated after an interrupt
operation is finished. We suppose the system runs on
a single-CPU machine. This means, only one domain
or hypervisor is allowed to run at a time. Base on this
suppose, we implement a priority-based round-robin
scheduling algorithm. Hypervisor has the highest-priority
(RING 0) and all the domains have the same priority (RING
1) that lower than hypervisor’s. The idle process has the
lowest-priority, and it is a special process executed when
no hypervisor or domain is ready.

2010 Second WRI World Congress on Software Engineering

978-0-7695-4303-1/10 $26.00 © 2010 IEEE

DOI 10.1109/WCSE.2010.115

110

2010 Second WRI World Congress on Software Engineering

978-0-7695-4303-1/10 $26.00 © 2010 IEEE

DOI 10.1109/WCSE.2010.115

119

2010 Second WRI World Congress on Software Engineering

978-0-7695-4303-1/10 $26.00 © 2010 IEEE

DOI 10.1109/WCSE.2010.115

119

2010 Second WRI World Congress on Software Engineering

978-0-7695-4303-1/10 $26.00 © 2010 IEEE

DOI 10.1109/WCSE.2010.115

119

For each domian,there are three different statuses: RUN-
NING, READY, and BLOCKED. Surely, if the hypervisor or
domain is scheduled to run, its status must be READY. For
this purpose, a new field schedInfo is introduced to store
the scheduling status and priority. When a scheduling event
occurs, the scheduling queue is traveled, and the scheduling
decision is stored in a global variable curr id that indexes
a descriptor. Then, the status information of selected process
will be changed to RUNNING.

C. Memory

CASMonitor is responsible for managing the allocation of
physical memory to guest OS, and scrubbing free memory.
Besides allocating and scrubbing memory, virtual memory
managing is also a basic memory service. In fact, virtualiz-
ing memory provides mechanisms such as protecting guest
domain from each other and translation between address
spaces, which is the most difficult part of so-called para-
virtualizing architecture.

Due to the limited description of PROMELA, we simplify
the memory manger services as follows: CASMonitor
partitions memory into independent regions to each domain
associated with a memory access privilege level. The access
is granted if the execution privilege is higher, or the access
is denied if the execution privilege is equal or lower.

Spin Model. We model the memory access mechanism by
an array that associates each region with its privilege level
and a set of operate functions that models memory accesses.
Before each memory access action, the access function
checks the current execution privilege (CPU MODE).

In our model, array mem is the descriptor of all domains
Array used is used to keep track of which descriptors are
allocated. The initialization function hm init sets all the
descriptors’ state (record in array used) to initial values. The
allocation function hm alloc tries to find an unallocated
descriptor and returns the index of the descriptor, or the
return value is assigned to -1 if the array is full. The
deallocation function hm free sets a descriptor’s state of
a given index to free.

D. Hypercall

Hypercall is a software trap from a guest OS to hypervisor.
Domains use hypercalls to execute privileged operations.
When a domain makes a hypercall and raises an interrupt,
which passes control from RING 1 to RING 0, i.e. from
domain running privilege to hypervisor’s privilege.

To use this mechanism, a domain sets its register to
appropriate values (service types and arguments), raises
a software interrupt, and switches the running context
form RING 1 to RING 0 to activate an interrupt handler.
According to the service type, hypervisor transfer the
control flow from the guest OS code to the corresponding
manipulation function.

Spin Model. In PROMELA, a channel variable chan can
be used to transfer messages between active processes. We
use a global channel to pass arguments from a domain to
the interrupt handler, whereas the response is sent back
to the domain through a private channel whose pointer is
passed as the reply arguments of the message receiving and
sending functions [5]:

inline recv_msg(from, smsg, reply) {...};
inline snd_msg(to, smsg, reply) {...};

The main function of hypervisor is implemented as a
infinite loop to receive messages from domains through
handler function. If no message comes, the hypervisor’s
status is changed to BLOCKED and declare waiting for
a message. Otherwise, hypervisor looks up the message
arguments and processes the interrupt.

The hypervisor executes the hypercall code, and uses
sending function to send the return value back to the
domain. Similar to hypervisor, domain uses receiving and
sending functions to raise interrupt and receive feedback,
and changes CPU MODE.

E. Mandatory Access Control

As a secure hypervisor, CASMonitor integrates a
flexible mandatory access control subsystem to control
communication between domains and isolate domain. A
Chinese Wall policy is implemented into this module. The
policy defines a group of chwall-type, usually a chwall-type
referring to a certain data set used by a guset. And then,
a conflict set is defined as a set of chwall-types [6]. Each
domain is assigned a Chinese Wall label consisting of a
set of chwall-types for this domain. Hypervisor starting a
domain is according to the following rule: if two domains’
labels are in a same conflict set, then these two domains
cannot run simultaneously.

Spin Model. We use an global array, conflictset, to
maintain current running domain and conflict information.
Each element in the array stores a domain’s Chinese Wall
label ssidref. In this setting, when Hypervisor wants to
create a new domain, it first calls the function as follows.

inline chwall_pre_create(ssidref, i)
{...};

This function reads the label of ssidref field in do-
main’s descriptor, and the argument i is used as a return
value. If a previous domain at the same conflict is already
built and still running, i is assigned to -1, otherwise hypervi-
sor calls the creation function to start the new domain, adds
the domain’s label to the conflict sets, and stores this domain
id. In addition, when a domain is destroyed, hypervisor
calls chwall domain destory function to clean the
corresponding label in conflict sets.

111120120120

III. EXPERIMENTS

In this section, we present several verifications done on
formal specification model of CASMonitor described in
the previous sections: the correctness of the Chinese-Wall
policy, the consistency of the hypercall and the isolation
property.

A. Chinese-Wall Correctness

According to our model, the application to create a
domain has two outcomes: success with the user request’s
state updated to SUCCESS, or return failure and the corre-
sponding conflict set was already occupied by another guest
OS. We use following LTL formula to describe this property.

#define request
(_usr_request[_curr_req].state ==
STATAPPLY)

#define wait (appstate == WAIT)

#define cre_failed
(_usr_request[_curr_req].state == FAILED
&& _user_domain[conflictsets[
_usr_request[_curr_req].type].domid])

#define cre_ok
(_usr_request[_curr_req].state ==
SUCCESS)

[](request -> wait U (cre_failed || cre_ok))

When a user wants to create a new domain, request’s
state is assigned to STATAPPLY. In the specification,
cre failed means the user failed to create a domain, and
the cre ok expresses the opposite outcome. As we men-
tioned before, the domid field of conflictset structure
stores id of the domain which occupies this conflict set. If a
creation request is failed, this outcome also implies that one
of the mutual exclusive domains is running. In our model,
we use an array user domain[] to trace each domain’s
status, so we can look up this array to determine whether a
mutual exclusive domain is running.

B. Consistency

The consistency property states [5] that a domain waiting
for a message (raise a hypercall) can never be scheduled.
Before the expected message received, the domain’s schedul-
ing status must be BLOCKED. We describe this property as
follows.

#define domainrun
(_curr_ctxt == (mem[curr_id].contextPtr))

#define waitdomain
(_user_domain[init_domain_id] &&

mem[init_domain_id].msgQueue.
msgPendingStatus == WAITING)

#define blockdomain
(_user_domain[init_domain_id] &&
mem[init_domain_id].schedInfo.status
== BLOCKED)

[]((waitdomain && domainrun) ->
blockdomain)

In this formula, init domain id is the user domain
id, and domainrun ensures that the current running process
is a domain not the handler. If the executing process is the
handler, the property is invalid.

C. Isolation

The isolation property is important for a CASMonitor
system, and this property means all the guest OS can only
run on RING 1 level. This property implies that whenever
a domain is running, it have no right to access the memory
of hypervisor which is in RING 0 privilege level. Only the
hypervisor code can access protected memory area, and if a
domain want to read or write it, a hypercall must be called.
That is to say, domains must use hypercall to communicate
or access protected areas. We define userdomainrun and
kernellevel assertions to represent this property. These
two assertions’ details are similar to the former definitions,
so we give the LTL formula directly.

[](userdomainrun -> !kernellevel)

D. Results

In order to increasing reasonable, our whole model con-
tains 780 lines PROMELA code for hypervisor, and 150
lines for applications. The experiment runs on a Core 2 Duo
2.00GHz machine with 16GB of RAM. We set the Spin ver-
ification option Maximum Search Depth to 10,000 to avoid
incomplete state search and select the “Use Compression”
optimization option to reduce memory consumption. We
measure resource consumption in function of the different
number of domains created in our model. Moreover, the
verifications of “consistency”, “isolation” use almost the
same amount of resource, so these two outcomes are merged
into one graph.

Figure 1 details the resource consumption in verification
including memory consumption and time consumption. We
find these three verifications’ consumption increase expo-
nentially during the experiment. In the third verification
(3 domains), Spin reports valid result after running for
around 280 seconds with a maximum memory utilization
of more than 8GB. We attempted to add a forth domain,
but the verification exceeded the memory capacity of the
machine. From the results, we also find the verification of
“correctness” uses more resource. That is mainly since the

112121121121

 0.1

 1

 10

 100

 1000

 10000

1 2 3

M
e
m
o
r
y

i
n

m
e
g
a
b
y
t
e
s

Number of domains

Consistency,Isolation
Correctness

(a) Memory consumption

 1

 7

 49

 343

1 2 3

T
i
m
e

i
n

s
e
c
o
n
d
s

Number of domains

Consistency,Isolation
Correctness

(b) Time consumption

Figure 1. Resource consumption in verification, including memory space
and execution time.

two temporal modalities nested in the LTL formula require
an additional traversal of the state space.

IV. RELATED WORK

Our control flow and memory model are inspired by the
work of Nicolas Marti et al. who also use Spin to check
some import properties of Topsy [5], a tiny embedded OS.
Their work is building in the Spin model-checker a model of
Topsy and verifying high-level properties, while our focus
is on security policy verification of Hypervisor.

In Nicolars’s paper, their aim is the proving of high-level
properties of the embedded system. However, in our work,
we are more interested in the separation and security control
of CASMonitor than others. Moreover, this work is just part
of big project about development of CASMonitor and more
detail specification and verification will carry out in future
work.

Jason Fanklin et al. have also analysed the design of a
secure hypervisor named Secvisor [4] with model checking
method. A formal specification of the memory protection
scheme of SecVisor is created with Mur𝜑 in their work, and
moreover, they report finding and repairing some security de-
fects of SecVisor in the paper. In contrast, our work is based

on a complete model of hypervisor, including the memory
subsystem, the hypercall and other main components.

V. CONCLUSION

In this paper, we specify and verify the design of CAS-
Monitor using Spin model checker. Our work not only pro-
vide a complete design model of the system, but also concern
their important secure properties. As a secure and high-
assurance computing platform, the formal model contains
the classical parts of a operating system. Moreover, we
integrate the Chinese-Wall policy into our formal model.
Based on this model, we verify the separation property
between different domains, which is important to a high-
assurance system.

Our experiment shows a effective high-assurance method
to development of micro kernels, and it reasonable enough
to support our future work and apply on the similar systems.

AVAILABILITY

The PROMELA code and three LTL formulas are avail-
able from http://code.google.com/p/securehypervisor/

ACKNOWLEDGEMENTS

This paper was supported in part by National High
Technology Research and Development Program of China
(863 Plan) under grant No. 2009AA010313 and the Key
Project of Chinese Academy of Sciences under grant No.
KGCX2-YW-125.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In ACM Symposium on Operating
Systems Principles, pages 164–177, 2003.

[2] D. F. C. Brewer and M. J. Nash. The Chinese Wall security
policy. IEEE Symposium on Security and Privacy, pages 206–
214, 1989.

[3] Department of Defense. Trusted Computer System Evaluation
Criteria (TCSEC). DoD 5200.28-STD.

[4] J. Franklin, A. Seshadri, N. Qu, S. Chaki, and A. Datta.
Attacking, repairing, and verifying secvisor: A retrospective on
the security of a hypervisor. Technical Report CMU-CyLab-
08-008, Carnegie Mellon University/Cylab, 2008.

[5] N. Marti, R. Affeldt, and A. Yonezawa. Model-checking of
a multi-threaded operating system. In 23rd Workshop of the
Japan Society for Software Science and Technology, University
of Tokyo, Tokyo, Japan, 2006.

[6] J. M. McCune, S. Berger, R. Cáceres, T. Jaeger, and R. Sailer.
Shamon: A system for distributed mandatory access control.
In Proceedings of the Annual Computer Security Applications
Conference, pages 23–32, 2006.

[7] B. Z. Wu. Casmonitor: A os monitor based on hypervisor
framework. Master’s thesis, Graduate University of Chinese
Acadmy of Sciences, Beijing, China, 2010.

113122122122

