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Abstract—We propose a new automated debugging method
for regression testing based on a synergistic application of both
dynamic and semantic analysis. Our method takes a failure-
inducing test input, a buggy program, and an earlier correct
version of the same program, and computes a minimal set of
code changes responsible for the failure, as well as explaining
how the code changes lead to the failure. Although this problem
has been the subject of intensive research in recent years, existing
methods are rarely adopted by developers in practice since they
do not produce sufficiently accurate fault explanations for real
applications. Our new method is significantly faster and more
accurate than existing methods for explaining failed regression
tests in real applications, due to its synergistic analysis framework
that iteratively applies both dynamic analysis and a constraint
solver based semantic analysis to leverage their complementary
strengths. We have implemented our new method in a software
tool based on the LLVM compiler and the KLEE symbolic virtual
machine. Our experiments on large real Linux applications show
that the new method is both efficient and effective in practice.

I. INTRODUCTION

Experience has shown that software updates often introduce
new bugs. Therefore, it is good practice to conduct regres-

sion testing during software development, which determines

whether new bugs have been introduced into the code with
previously working functionality. Although there exist many

tools to automate this process in practice, e.g., re-running

regression tests periodically and reporting failures as soon as
they occur, detecting these failures is only the first step. The

more challenging task is to identify the relevant code changes

and explain why these changes lead to the failure. This is
where existing methods fall short.

Although there has been a large body of work on automated
debugging in the context of regression testing, few of the

existing methods are actively used by developers in practice,

for several reasons. First, they are not accurate enough in that
faulty code changes are either missed or buried in a large

number of irrelevant ones. Second, the causal relationship be-

tween faulty code changes and the manifested failures are not
explained well enough. Third, in many cases, merely reverting

the faulty code changes is not enough because other code
changes may be needed as well to make the modified program

compile successfully. Due to these problems, developers are

forced to rely on manual efforts to interpret the failures.

We propose a new synergistic analysis framework to signif-

icantly improve the accuracy of the automatically computed
fault explanations, by leveraging a re-execution based dynamic

analysis together with a constraint solver based semantic
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Fig. 1. Synergistic (Dynamic and Semantic) Analysis Framework.

analysis to take advantage of their complementary strengths.
Specifically, dynamic analysis is effective in identifying the

correlation between code changes and the manifested failure,

i.e., by reverting some of these changes and re-executing
the program to see if it still fails, but this is ineffective in

identifying the causal relationship between the code changes

and the failure. In contrast, semantic analysis is effective in
identifying the causal relationship between the code changes

and the failure, but is ineffective in identifying the actually

faulty code changes from a large number of possible ones. By
leveraging both types of analysis, we can locate the root cause

more accurately as well as more quickly.

Fig. 1 shows the overall flow of our method. Given a

correct program P , its faulty evolution P ′, and a failed
test case t, our method first computes the code difference

between P and P ′ (denoted∆). Then, it replays the erroneous

execution π and obtains the failed assert condition (ρ). Here,
we assume the failure is modeled as a failed assertion. Once

π, ρ, and ∆ are available, our method starts the iterative

steps of applying semantic analysis and dynamic analysis,
which are connected with a third component called critical

predicate identification. Initially, the critical predicate fed to

the semantic analysis is the failed assert condition ρ, based
on which our semantic analysis computes the cause (causal

chain of events responsible for ρ). In the subsequent dynamic
analysis, we identify, among the code changes in ∆, a subset

(∆root) that is responsible for the critical predicate ρ. If ∆root

can be found, we are done. Otherwise, we identify another
critical predicate from the current causes and try again. In

the end, we report ∆root together with all related causes and
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--- find4.15/find.c
+++ find4.18/find.c
@@ -377,0 +421,6 @@
+
+#ifdef O_NOFOLLOW
+ options.open_nofollow_available = check_nofollow();
+#else
+ options.open_nofollow_available = false;
+#endif

Fig. 2. Incorrect code changes reported by ADD on find-a.

present them in a tree-like structure, to highlight the causal
relationships between the changes and the failure.

Our new method has significant advantages over existing

methods such as delta debugging (DD) [1] and its variants such

as augmented delta debugging (ADD) [2], due to its synergistic
application of both semantic analysis and dynamic analysis.

Delta debugging, in contrast, relies on dynamic analysis only.

As an example, consider a regression test failure in version
4.2.18 of Linux application find, which has 24K lines of code

and 71 code changes since the last correct version 4.2.15.
Fig. 2 shows the code changes localized by ADD, which com-

pletely missed the real bug. Although reverting these changes

can modify the value of open_nofollow_available in
function check_nofollow, thereby avoiding the buggy func-

tion safely_chdir_nofollow, it merely dodges the failure

for the given test input, without fixing the bug.

In contrast, our new method would report the changes
ch1 and ch2 as shown in Fig. 3. A careful study of the

bug fix provided by the developers shows that Change
ch1 matches the actual bug fix. The bug is due to

the fourth argument symlink_handling of the function

safely_chdir_nofollow, which was ignored in the new
version. The developers fixed the bug by adding a switch

statement to handle the previously ignored argument. Although

Change ch2 does not need to be reverted or modified in order
to fix the bug, it is still important since it explains why the

faulty function is invoked in the first place. Therefore, the

failure explanation computed by our method is more accurate
and helpful to debugging. In addition, our method identifies

14 auxiliary code changes that need to be reverted together

with ch1 and ch2 to make the modified program compile
successfully – in previous methods, this time-consuming step

requires the developers’ manual effort.

Although DD reports the two faulty code changes ch1 and
ch2, which is better than ADD (since it missed them), these

two changes are buried among eight other code changes that

are irrelevant to the failure. The developers have to sift through
these other changes manually to understand the root cause.

Furthermore, the program obtained by reverting only these

ten changes cannot be compiled successfully, which prevents
the developers from quickly checking the correlation between

them and the failure. Our new method, in contrast, can auto-
matically identify the auxiliary changes needed to be reverted

to make the program compile successfully. Finally, neither DD

nor ADD can guarantee that there is a causality relationship
between the reported code changes and the manifested failure,

whereas our new method can.

--- find4.15/find.c
+++ find4.18/find.c
@@ -987,0 +1082,78 @@ // ch1
...
+static enum SafeChdirStatus
+safely_chdir_nofollow(const char *dest,
...
+static enum SafeChdirStatus
+safely_chdir(const char *dest,
...
@@ -1368 +1641 @@ // ch2
- enum SafeChdirStatus status = safely_chdir

(name, TraversingDown, &stat_buf);
+ enum SafeChdirStatus status = safely_chdir

(name, TraversingDown, &stat_buf,
SymlinkHandleDefault);

Fig. 3. Correct code changes reported by AFTER on find-a.

There is also a large body of work on identifying the root

cause of a manifested failure [3], [4], [5], [6] based on seman-

tic analysis only. However, the problem with these methods
is that they focus only on the failures without considering

the code changes between two versions, and therefore do

not leverage the fact that the original version can serve as
a model of the intended program behavior. Furthermore, some

existing methods rely on a test suite to provide sufficiently
many passing and failing test runs, which may not always exist

in practice. Without a golden model or formal specification,

the number of possible causes of a manifested failure tends
to be very large, since changing any part of the control or

data flow along the faulty execution trace could lead to the

flip of the assertion condition. Our new method, in contrast,
can mitigate the potential explosion of possible causes of a

manifested failure by restricting the analysis only to code

changes committed between the two versions.

Finally, our new method can guarantee that there is not only

correlation but also causality relation between the reported

code changes and the manifested failure. We present the causes
(causal chains of events) that connect the code changes and the

failure in a tree-like structure for ease of comprehension. Each

event in the causal chain corresponds to a program statement
responsible for propagating the fault. Such explanation is more

informative than a ranked list of warnings reported by existing

methods – it is the reason why we call our approach fault
explanation rather than fault localization.

We have implemented our method in a tool built upon

LLVM [7] and KLEE [8] and evaluated it on a set of
Linux applications such as find, bc, make, gawk, and diff.

Our experimental results show that the new method is both

accurate and efficient in computing faulty code changes and
explaining the causality relation between them and the failures.

To summarize, this paper makes the following contributions:

• We propose a new synergistic analysis method for ex-

plaining failed regression testes by leveraging both se-

mantic and dynamic analysis in a unified framework.
• We implement the method in a software tool based on the

LLVM compiler and the KLEE symbolic virtual machine.

• We evaluate the new method on a set of large Linux
applications and demonstrate its effectiveness in practice.

The remainder of the paper is organized as follows. We

present the overall algorithm in Section II, which is then
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followed by a detailed description of each major component.
We illustrate our method using an example in Section III.

We discuss implementation details in Section IV. We present

the experimental results in Section V, review related work in
Section VI, and finally give our conclusions in Section VII.

II. THE SYNERGISTIC ANALYSIS METHOD

Algorithm 1 shows the overall flow of our method based
on three inputs: the correct program P , the faulty revision P ′,

and the failure-inducing test input t. Let ∆ be the set of code

changes between P and P ′, π be the faulty execution trace,
and ρ0 be the failed assertion. The main part of the algorithm
is a loop with three steps: the semantic analysis, the dynamic

analysis, and the extraction of critical predicates. These three
steps are described as follows:

• In the semantic analysis, our goal is to compute a causal
chain of events explaining why the path π leads to the

critical predicate ρ. The result is a subset of executed

statements, denoted θ (called a cause), that forces ρ to
become valid. We use Θ to denote the accumulative set

of all causes computed by this analysis. The detailed

algorithm is presented in Section II-A.
• In the dynamic analysis, our goal is to determine whether

θ is indeed the root cause. In the context of regression

testing, we assume that a root cause must be one that
involves some of the code changes committed between

P and P ′. Given the code changes identified by semantic
analysis (

⋃
θ∈Θ
∩∆), we repeatedly execute P ′ with

different subsets of these code changes reverted, to see

if it can avoid the failure. The detailed algorithm is
presented in Section II-B.

• If the current iteration of semantic-dynamic analysis

fails to locate the root cause, we need to continue the
analysis in the upstream of the cause θ. Toward this end,
we identify the set Pθ of critical predicates, which are

branching conditions along the faulty execution trace π
that determine whether the current cause θ can occur.

These critical predicates will in turn be used as seeds

for the next round of semantic-dynamic analysis. The
detailed algorithm is presented in Section II-C.

If the root cause is found, we return the code changes in
∆root together with the relevant subset of causes in Θ. The
reason why this is a better failure explanation result is because,

in many cases, merely pointing out the faulty code changes is
not enough for the developers to understand how they lead to

the manifested failure. Therefore, we augment ∆root with the

relevant causes to illustrate their causality relationship between
the code changes and the manifested failure.

A. Semantic Analysis

Given the faulty path π and the predicate ρ (the negated
assert condition), the objective of semantic analysis is to find

out why ρ holds in π. In other words, why the execution π
would not lead to ¬ρ (passing of the assertion).
Our semantic analysis is based on computing the weakest

precondition of ¬ρ along the faulty execution path. Following

the notation of Dijkstra [9], we define the weakest precondition
of a predicate φ with respect to an instruction s as a function
mapping φ to the formula wp(s, φ), such that wp(s, φ) is the

Algorithm 1 Explain (Program P , Program P ′, Test Input t)

1: Let ∆ be the set of code changes between P and P ′;
2: Let π be the faulty execution trace of P ′ under input t;
3: Let ρ0 be the first critical predicate (failed assertion);
4: Initialization: predicate set P = {ρ0}; cause set Θ = ∅;
5: while P 6= ∅ do
6: Remove a predicate ρ from P ;
7: θ ← SemanticAnalysis (π, ρ);
8: Θ = Θ ∪ θ;
9: ∆root ← DynamicAnalysis (P ′,

⋃
θ∈Θ ∩∆);

10: if ∆root 6= ∅ then
11: return ∆root together with the relevant causes in Θ;
12: end if
13: Pθ ← ExtractCriticalPredicates (θ);
14: P = P ∪ Pθ ;
15: end while

weakest condition satisfied before executing s that guarantees
ρ to be satisfied after executing s. Formally, the weakest

precondition (WP) over an assignment, a branching statement,
and a sequence of instructions are defined as follows:

• Assignment x := expr: We define wp(x:=expr, φ) =
φ[x ← expr]. That is, each appearance of x in φ is

replaced by the right-hand-side expression expr.
• Branch if (c): We define wp(if (c), φ) = (c ∧ φ).
• Sequence of Instructions: We define wp(s1; s2, φ) =

wp(s1, wp(s2, φ)).

During dynamic analysis, assume that the faulty execution

trace is π = 〈s1 . . . sn〉 and ρ is the critical predicate that

holds at the end of π, our WP computation is an iterative
procedure wp(s1, . . . wp(sn,¬ρ)). Since π actually led to ρ,
the logical formula representing the intermediate result of
the WP computation must become false at some point. As

soon as wp(si, . . . wp(sn,¬ρ)) becomes false, we stop the

WP computation, and invoke a satisfiability modulo theory
(SMT) solver to compute the minimal unsatisfiable (UNSAT)

core. Modern SMT solvers such as Yices [10] and Z3 [11] can

produce an UNSAT core for a unsatisfiable logical formula,
which is a minimal subset of the conjunctive constraints that

is still unsatisfiable. In the context of fault localization, the

UNSAT core succinctly explains why π cannot lead to ¬ρ.
Unfortunately, there still is a gap because the UNSAT core

and the cause (causal chain of events) for critical predicate ρ
because the UNSAT core itself does not tell us which program

statements are responsible for generating the constraints in
the UNSAT core. Therefore, we need to map the UNSAT

core back to the original program statements by leveraging the

so-called generator instructions. Given the UNSAT core, the
generator instructions of the UNSAT core are all the assign-

ments that participate in the creation of the manifested failure.

Intuitively, these statements collectively are responsible for
causing ¬ρ to become invalid at the end of the execution π.
Definition 1: A generator instruction of a predicate φ is

either an assignment v := expr such that v appears in the

transitive support of φ, or a branching condition where the
predicate φ originally comes from.

It is worth pointing out that, during the WP computation, an

if(c) condition can only add a new conjunctive constraint (c) to
the existing formula, but not transform an existing predicate.
In the running example to be introduced in Section III, the

generator instructions of the predicate (sum = 4) at Line 13
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Algorithm 2 DynamicAnalysisRecur (Program P ′, Set ∆, Size n)

1: if |∆| < n then
2: Execute the program P ′ with changes in ∆ reverted;
3: return ∆ if the execution passes
4: and ∅ otherwise;
5: end if
6: Partition ∆ into n subsets: ∆1, . . . ,∆n;
7: for each subset ∆i do
8: if the execution of P ′ with ∆i reverted passes then
9: return DynamicAnalysisRecur (P ′,∆i, 2);
10: else if the execution of P ′ with (∆ \∆i) reverted passes then
11: return DynamicAnalysisRecur (P ′, (∆ \∆i), 2);
12: end if
13: end for
14: return DynamicAnalysisRecur (P ′,∆, 2n);

are {s2, s3, s7, s10, s13}, the bold line numbers in Fig. 7. We

call these statements collectively a cause as they form a causal
chain of events that eventually triggers the failure.

However, the first cause (θ) computed from the failed
assertion ρ0 may not be the root cause. In regression testing,

if θ is not triggered by some of the code changes committed

between the correct program P and the buggy version P ′,
we would not consider θ as a root cause. The assumption is

that the failure manifested in P ′ but not in P is triggered by

some of the recent code changes. In general, it is possible
for the root cause to trigger the manifested failure indirectly,

by transitively affecting the direct cause θ computed from the

failed assertion ρ0. Therefore, following the semantic analysis,
we shall apply the dynamic analysis to determine whether θ
is a root cause, and if the answer is no, we shall identify the
new starting points for the subsequent semantic analysis.

B. Dynamic Analysis

After the semantics analysis in Section II-A produces a

new cause θ and updates the set of causes Θ, the objective

of dynamic analysis is to determine which cause, together
with the related code changes, is the root cause. The idea,

which is similar to the trial-and-error approach used in delta

debugging, is to execute the buggy program P ′ with various
combination of code changes reverted, to see if the execution

passes or fails.

Given the set of causes Θ discovered so far, Algorithm 2
presents our approach to finding the smallest set of changes,

such that the execution of P ′ with the changes reverted passes.
The algorithm is recursive with an initial set of changes being

∆Θ =
⋃

θ∈Θ
∩∆, i.e., any change that appears in at least

one cause, and the value n = 2. In other words, the call
DynamicAnalysis(P ′,∆) in Algorithm 1 is implemented as

DynamicAnalysisRecur(P ′,∆, 2).
Specifically, at Line 6, the set ∆ of changes is first par-

titioned into n subsets. Then, for each subset ∆i, we first

execute P ′ with∆i reverted. If the execution passes, we would

like to find out if an execution with a reverted subset of ∆i

can still pass, thus we invoke the recursive call at Line 9. If

the execution with reverted∆i fails, we try its complement set
(∆ \∆i) at Lines 10 and 11. If no subset or its complement

can make an execution pass, we double the value of n so

that bigger subsets can be tested. Eventually n becomes larger
than the size of ∆ itself and it becomes the base case of the

recursive function. In Lines 1 to 5, if the number of changes

1 int x;
2 int y; //c1: int m;

...
3 x=...;
4 y=...; //c2: m=...;

...
5 z=x+y+2; //c3: z=x+m+3;

6 assert(z=10)

Fig. 4. Code snippet cannot be com-
piled after reverting only c3.

1 int a=2, b=1, c=1, d=0;
2 if (a>0) {
3 if (b<0)
4 if (c!=2)
5 c=2; //end if\@L4

6 d=c+3; //end if\@L3

} //end if\@L2

7 assert(d==5);

Fig. 5. An example for computing
the critical conditions.

under consideration is less than n, the dynamic analysis either
returns all the changes if the execution with reverted∆ passes,

or returns ∅ if the execution still fails.
Algorithm 2 differs from the approach used in delta debug-

ging in that it is asymmetric – we consider passing executions

only. A symmetric approach would be to consider both passing
and failing executions: if an execution with reverted change

c passes, c is fault related; but if an execution with reverted
change c still fails, c is irrelevant to the failure. Although

this approach has been employed in many prior works such as

delta debugging, it may lead to some faulty code changes to be
missed, especially when the failure is caused by multiple code

changes. Consider the program in Fig. 6 as an example. The

buggy program P ′ can be executed without failure only if both
changes c2 and c3 are reverted. However, since a re-run with

c2 reverted fails, a symmetric approach would wrongly claim

that c2 is irrelevant. In contrast, our asymmetric approach
would not exclude such faulty code changes.

Finally, it is worth pointing out our method presented in
Algorithm 2 may not obtain the optimal solution. It is designed

in this way to improve the runtime performance in practice,

because re-runs can be expensive, especially when the faulty
code changes are far away from the failure in terms of the

control flow distance. Therefore, in practice, we need to make

a trade-off between the accuracy of the computation result and
the runtime overhead.

C. Critical Predicate Identification

The dynamic analysis presented in section II-B may not

discover the set of code changes responsible for the failure in
one shot. In such case, the current cause merely propagates

the fault instead of causing the failure. Therefore, we need to

examine the upstream of this cause θ along the faulty path π.
Recall that in Section II-A, the generator instructions

identified from a cause mandate the validity of a critical
predicate (which initially is the failed assertion). If we make

changes to at least one generator instruction, the predicates

can be evaluated differently. Given a generator instruction
s : v := expr , there are two ways to change s. One is to

change the conditional statement that s depends on so that s
may not be executed. The other one is to change the values of

the variables in exp so v can be evaluated differently. Based

on this observation, we now define the critical predicates with
respect to a generator instruction s.
Definition 2: The predicate in a branching statement b is

called a critical predicate if it has potential impact on a

generator instruction t by:
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• direct influence b t: b immediately determines whether
t will be executed; or

• indirect influence b # t: b determines whether an

unexecuted statement s will be executed, and s in turn
redefines a variable read by t.

Our use of indirect influence in the above definition is sim-

ilar to the potential dependence used in relevance slicing [12].

Based on the definition, the set of critical predicates of Pθ in
a cause θ is Pθ =

⋃
t∈θ{b | (b t) ∨ (b# t)}, where t is a

generator instruction.

Consider the program in Fig. 5 as an example. It has

an assertion failure along the execution path 〈1, 2, 3, 6, 7〉,
because the value of d is 4, not 5, at Line 7. Using the
algorithm presented in Section II-A, we can obtain the first

cause θ0 = {1, 6, 7}. Assuming θ0 is not the root cause, now

we need to look for the critical predicates with respect to the
generator instruction at Line 6.

Based on Definition 2, the predicate at Line 2 is critical
since it controls whether Line 6 will be executed. The predicate

at Line 3 is also critical: were it evaluated to true, the statement

at Line 5 would have been executed and c would have been
redefined. Note that we only consider the executed predicates.

The predicate at Line 4 is not considered critical because it is

not executed during the test. The critical predicates serve as
new starting points for the subsequent semantics analysis, as

indicated in Algorithm 1.

Algorithm 3 ExtractCriticalPredicates( Cause θ )

1: for each sl ∈ θ do
2: let sj be the closest enclosing branch of sl not post-dominated by sl;
3: Pθ.add(sj); // direct influence
4: for each variable var used by sl do
5: let s be the last instruction that defines var before sl;
6: for every branch sj between s and sl do
7: if indirectInfluence(sj , var) then
8: Pθ .add(sj); // indirect influence
9: end if
10: end for
11: end for
12: end for

The pseudo code for computing the critical predicates is

shown in Algorithm 3, which follows Definition 2 with the
following modification. For each generator instruction sl ∈ θ,
we choose only the immediate preceding instance of sl that
is not post-dominated by sl (Lines 2-3), because other critical
predicates will be computed during the subsequent iterations

of our analysis. Therefore, no root cause will be missed due

to this simplification.

In Algorithm 3, Lines 4-11 deal with the indirect influence.

Here, s denotes the last instruction found in θ that assigns
a value to the variable var. Only direct influence in a prefix

denoted {s1, ..., sx} can affect the causes generated in suffix

{sx, ..., sn}. If s is the last statement before sl that assigns the
variable var used by sl, then during the backward analysis,

s and sl represent the upper and lower bound of indirect
influence, respectively. For each var used by sl, the loop

at Line 6 identifies every branch instance sj between s and

sl, which can indirectly affect the value of var as a critical
predicate. An example of such instance is the one at Line 3

in Fig. 5.

1 bool sorted = True;
2 void f(int x,int y,int z){
3 int sum = 0;
4 if (!sorted) {
5 if (x > y)
6 sum += x;

else

7 sum += y;
}else

8 sum += x;
9 if (z > 0)
10 sum += z;

else

11 sum += (0-z);
12 printf("sum=%d\n",sum);
13 assert(sum == 4);

}

1 bool sorted = False; //c1

2 void f(int x,int y,int z){
3 int sum = 0;
4 if (!sorted) {
5 if (x < y) //c2

6 sum += x;
else

7 sum += y;
}else

8 sum += x;
9 if (z > 0)
10 sum += (0-z); //c3

else

11 sum += z; //c4

12 printf("sum=%d\n",sum);
13 assert(sum == 4);

}

Fig. 6. Correct and buggy programs, with four code changes c1, c2, c3, c4
and failure-inducing test input {x = 3, y = 2, z = 1}.

Step Line Num. Weakest Precondition (WP) Satisfiability

1 13 sum=4 SAT

2 10 sum-z=4 SAT

3 9 z > 0 ∧ sum− z = 4 SAT

4 7 z > 0 ∧ sum+y-z=4 SAT

5 5 x ≥ y ∧ z > 0 ∧ sum+ y − z = 4 SAT

6 4 ¬sorted ∧ x ≥ y ∧ z > 0 ∧ sum+ y − z = 4 SAT

7 3 ¬sorted ∧ x ≥ y ∧ z > 0 ∧ y-z=4 SAT

8 2 ¬sorted ∧ 3 ≥ 2 ∧ 1 > 0 ∧ 2-1=4 UNSAT

Fig. 7. Applying our semantic analysis to the example in Fig. 6, with the
faulty execution trace and the critical predicate (sum 6= 4).

III. THE RUNNING EXAMPLE AND COMPARISON TO

EXISTING METHODS

In this section, we use an example to further illustrate the

three steps of our new method. We also compare our method

with existing approaches to show that it can return better
failure explanations in regression testing.

Fig. 6 shows, side by side, a correct program (left) that
computesmax(x, y)+|z| and a buggy revision of the program
(right) with four code changes, denoted c1, c2, c3 and c4,
respectively. In this example, the variable sorted indicates
whether the three input variables have been sorted in the

descending order and the variable sum stores the computation
result. Due to the code changes at Lines 1, 5, 10, and 11,

executing the revised program under the test input 〈3, 2, 1〉
(for x, y, z) leads to a wrong result (sum = 1) instead of
(sum = 4). The actual code changes responsible for this

failure are c2 and c3. However, existing methods such as delta
debugging may either report redundant code changes or miss
the faulty code changes. Our new method, in contrast, can

identify the faulty code changes precisely as well as explain

why they are responsible for the failure.

A. Applying Our New Method

Our method starts by replaying the failed test case 〈3, 2, 1〉
on the buggy program (right). Based on the failed execution

trace π = 〈s1, s2, s3, s4, s5, s7, s9, s10, s12, s13〉, our method
performs the first semantic analysis to identify the cause of

the failed assert condition (sum 6= 4). The cause returned
by the semantic analysis is a minimal set of events (a causal

chain) linking some code changes to the failed assertion.

Specifically, we negate the initial predicate (sum 6= 4) at
Line 13 and compute the weakest precondition of (sum = 4)
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θ1: {2, 5 (c2)} θ2: {2, 9}

θ0: {2, 3, 7, 10 (c3), 13}

Fig. 8. Our tree-like structure for explaining the cause of the failure.

along the erroneous execution trace backwardly. Since the

execution led to (sum 6= 4), the weakest precondition of

(sum = 4) is guaranteed to become false at some point
during the backward traversal. Fig. 7 shows the steps of this

computation, where the WP becomes an unsatisfiable formula

at Line 2 after 8 steps, and the UNSAT core is shown as
follows:

(x = 3) ∧ (y = 2) ∧ (z = 1) ∧ (sum0 = 0) ∧ (sum1 = sum0 + y)

∧(sum2 = sum1 + 0− z) =⇒ (sum2 6= 4)
(1)

For ease of comprehension, we have used the static single

assignment (SSA) form in the above formula to differentiate

multiple occurrences of sum.

Next, we map the constraints in this unsatisfiable subfor-
mula (UNSAT core) back to the program statements that

produce them (generator instructions).

We get a causal chain of events (or a cause): φ0 =
{s2, s3, s7, s10, s13}, which explains why the assert condition

(sum = 4) failed. Constraints that are not in the UNSAT core

are deemed as irrelevant.

However, a cause returned by the first semantic analysis
may not be the root cause of the failure. In the subsequent

dynamic analysis, we check if it is root cause by inspecting

the code changes committed between the correction program
P and the buggy revision P ′. Since c3 is the only code change
in φ0, to decide if φ0 is the root cause, we revert the change

c3, re-compile, and re-execute the program. Since the assertion
still fails after c3 is reverted, we conclude that φ0 is not the

root cause – otherwise, reverting c3 would have fixed the bug.
Unlike existing methods such as delta debugging, our use of
this trial-and-error style dynamic analysis is guided by the

cause computed by the preceding semantic analysis.

Since φ0 is not the root cause but a link between the root
cause and the failure, we need to analyze the chain of events in

φ0 to identify other critical predicates. A critical predicate is

a branching condition whose value determines whether events
in φ0 can occur during the execution. In this example, the two

critical predicates come from s5 and s9, respectively, since
they determine whether assignments at Lines 7 and 10 can
be executed. These critical predicates are new starting points

for the next round of semantic analysis based on the weakest

predication computation.

The two new causes returned by the subsequent semantic
analysis are θ1 = {s2, s5} and θ2 = {s2, s9}, the first of

which is triggered by the code change c2. Furthermore, both
changes c2 and c3 are included in the accumulative set Θ of

discovered causes. A subsequent dynamic analysis confirmed

that reverting both c2 and c3 would make the failure go away.
Therefore, θ1 is the root cause. In contrast, θ2 = {s2, s9} is
irrelevant.

Step c1 c2 c3 c4 P/F Max Pass Min Fail Diff

0
P {} {c1, c2, c3, c4} {c1, c2, c3, c4}√ √ √ √
F

1
√ √

F {} {c3, c4} {c3, c4}

2
√

P {c4} {c3, c4} {c3}

Fig. 9. Steps of applying delta debugging to the example in Fig. 6.

To report the code changes responsible for the failure, we

present c2 and c3, as well as the causal chains of events

(causes), in a tree-like structure shown in Fig. 8. In this figure,
nodes are the code changes responsible for triggering the

manifested failure and the causal chains of events, whereas

edges are the critical predicates linking the causal chains
together. Specifically, the result in Fig. 8 shows that the cause

θ1, which includes the change c2, leads the incorrect outcome
at Line 5, and the cause θ0 propagates the effect of c2 to the

failure at Line 13, which includes the code change c3.

B. Comparing to Other Methods

The reason why our method is more robust than existing

methods is because of its use of semantic analysis to guide

dynamic analysis, and vice versa. Therefore, our method can
identify not only the correlation but also the causality relation

between the faulty code changes and the manifested failure.

To illustrate this advantage, we apply some of the existing
methods to the example in Fig. 6 and compare the results.

Fig. 9 shows the results of applying delta debugging

(DD) [1] to the running example. In Columns c1 − c4, the
symbol

√
means that a code change is applied to the correct

version P and − indicates that the change is omitted. There-

fore, −−−− represents the previously correct program P and√√√√
represents the buggy program P ′. Column P/F shows

whether the execution passed without failure or failed. Col-

umn Max Pass shows the maximal set of changes applied to
P while the execution still passes, whereas Column Min Fail

shows the minimal set of changes applied to P while the

execution still fails. Delta debugging starts with the correct
program (−−−−) and the faulty program (

√√√√
), for which

Max Pass is empty whereas Min Fail is the complete set of

changes. The goal is to iteratively reduceMin Fail and enlarge
Max Pass such that the difference, shown in Column Diff, is

minimized. When Diff can not be reduced further, it contains

the explanation for the failure.

Initially, the set of changes is partitioned into subsets
{c1, c2} and {c3, c4}. Since applying {c3, c4} to the correct

program P causes the execution to fail, delta debugging

assumes that the faulty changes are inside {c3, c4}. Therefore,
it decreases Min Fail from {c1, c2, c3, c4} to {c3, c4} and

partitions {c3, c4} into {c3} and {c4}. Since applying {c4}
to program P avoids the failure, c4 is added to Max Pass.
Delta debugging terminates after this step as {c3} cannot

be partitioned any further. Therefore, Diff={c3} is reported
as the explanation. However, this is not the correct result

because if we keep the changes of c1, c2 and c4 in the revised
version, and only revert c3, the execution still leads to the
assertion failure. Therefore, the code changes localized by

Delta Debugging is not accurate in this example.
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Besides delta debugging, there are also fault localization
methods based on dynamic slicing [13] and symbolic tech-

niques such as DARWIN [14], [15]. Our method is also

more accurate than these methods. Dynamic slicing eliminates
program statements that are irrelevant to the manifested failure

based on computing the data- and control-dependence. It is a
popular technique because of its low cost, but unfortunately,

is not accurate [16]. In the running example, dynamic slicing

would not be able to prune away any of the program statements
in the faulty trace π because the failed assertion transitively

depends on all the statements.

DARWIN may produce a better result than dynamic slicing,

but the result is still inferior to the one returned by our method
because DARWIN does not apply semantic and dynamic

analysis synergistically. Specifically, DARWIN tries to explain
failure by comparing the weakest precondition of the assertion

along the execution paths in the correct program and its

faulty version. Applied to the running example, it would
generate the weakest preconditionWP1 in passing execution as

sorted∧ (z > 0)∧ (x+z = 4), and the weakest precondition WP2

in failing execution as ¬sorted ∧ (x ≥ y) ∧ (z > 0) ∧ (y − z = 4).
Since all conditions in WP1 (WP2) are unexplained by WP2

(WP1), except for (z > 0), DARWIN would report almost all

the executed statements in both the passing and the failing
executions as failure-related. As a result, the developers would

have to sift through the irrelevant code changes and program

statements in order to understand the root cause of the failure.
Compared with [14], [15], our method exploits the use of

UNSAT cores to prune away redundant predicates, and stops
the backward exploration as soon as error-inducing code

changes are identified. In addition, our method presents a tree

based structure to illustrate the fault propogation.

IV. COMPUTING AUXILIARY CODE CHANGES

Besides passing or failing, an execution of the program P ′

with some reverted code changes may have a third possibility

– the program may not be compiled successfully. Consider the
example in Fig. 4. When only the change c2 is reverted, the

resulting program cannot be compiled because the variable m
has not been declared before its usage. During our study of
real-world regression test examples, we have found that such

cases are common in practice and it is time-consuming for
the developers to identify such code changes manually. In this

section, we present a solution to this problem.

The problem we want to solve is formally stated as follows.

Assume P ′ can no longer be compiled with the code changes
in ∆− reverted, our goal in Algorithm 4 is to find an augment

set of code changes, denoted ∆+, such that if ∆+ is reverted
together with ∆−, the resulting program can be compiled.

While computing∆+, we ensure that ∆− remains the set of

code changes that have caused the compilation error in the first

place. In contrast, we decrease the set ∆+ monotonically dur-
ing the recursive application of the function FindAuxChange().

Initially the value of ∆+ is (∆\∆−), the set of all changes in
P ′ except ∆−. Since (∆− ∪∆+) is the same as ∆, reverting

these changes in P ′ leads to P , which can be compiled

successfully. The goal of each recursive call is thus trying
to find a subset of ∆+ that can still work together with ∆− to

make the program compile. This is achieved by partitioning

Algorithm 4 FindAuxChange (Set ∆−, Set ∆+, Size n)

1: assert(Program P ′ with (∆− ∪∆+) reverted can be compiled);
2: if |∆+| < n then
3: return ∆+ ;
4: end if
5: Partition ∆+ into n subsets: ∆1, ...,∆n;
6: for each ∆i do
7: if Program P ′ with (∆− ∪∆i) reverted can be compiled then
8: return FindAuxChange(∆− ,∆i, n);
9: else if P ′ with ∆− ∪ (∆+ \∆i) reverted can be compiled then
10: return FindAuxChange(∆− , (∆+ \∆i), n);
11: end if
12: end for
13: return FindAuxChange(∆− ,∆+, 2n);

--- FileA
+++ FileB
@@ -BeginA,SpanA +BeginB,SpanB @@
- Line_A_1
- ...
- Line_A_SpanA
+ Line_B_1
+ ...
+ Line_B_SpanB

Fig. 10. The template of the unified code changes.

∆+ and trying out each subset. The invariant that (∆−∪∆+)
solves the compilation problem is always maintained. We note

that all changes in the program P ′ have to be considered, not

just the changes appearing in the faulty path π.
To improve the performance, we rely on the program

structure to partition the change set. For example, a change
often grammatically depends on the changes within the

same file or function, so we partition accordingly. Further-

more, in Algorithm 4, we cache the results of FindAux-
Change to prevent redundant computation. For example, after

∆+
1 =FindAuxChange(∆−

1 ,∆ \∆−

1 , 2) is computed, we need
to find an auxiliary set for ∆−

2 ⊂ ∆−

1 . In this case, we
invoke FindAuxChange(∆−

2 ,∆
+
1 , 2) because the program with

reverted (∆−

2 ∪∆+
1 ) can always be successfully compiled.

The set of all code changes in the program is computed

using the Linux utility application diff (which happens to be

a benchmark application used in our experimental evaluation
of the new method), which is used with the option u to

compute the difference between two versions. Fig. 10 shows
the template of such comparisons. It starts with two lines of

the two file names under comparison (the time part is omitted)

and then describes the change hunks. Each change hunk starts
with a line "@@ -BeginA,SpanA +BeginB,SpanB @@" that

specifies the starting and ending line numbers of the changes

between the two files. Following the ranges are the detailed
differences. That is, Lines BeginA ∼ BeginA+SpanA-1 from

FileA is replaced by Lines BeginB ∼ BeginB+SpanB-1

from FileB. During the implementation, we have chosen the
smallest granularity possible because the size of the change

hunks may affect the precision of the subsequent analysis.

V. EXPERIMENTS

We have implemented our method in a tool based on the

LLVM compiler [7] and the KLEE symbolic virtual ma-
chine [8]. The tool, called AFTER (Automated FaulT Expla-

nation for Regression testing), can handle C/C++ applications
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TABLE I
CHARACTERISTICS OF THE BENCHMARK APPLICATIONS USED IN OUR EXPERIMENTS.

Name LoC Correct (P ) Buggy (P ′) #Change Failure Description Reported Site

find-a 24k V4.2.15 V4.2.18 71 Using -L/-H produces wrong output http://savannah.gnu.org/bugs/?12181
find-b 40k V4.3.5 V4.3.6 243 Using -mtime produces wrong output http://savannah.gnu.org/bugs/?20005
find-c 40k V4.3.5 V4.3.6 243 Using -size produces error message http://savannah.gnu.org/bugs/?30180
bc 10k V1.05a V1.06 534 Argument processing error https://bugs.gentoo.org/show bug.cgi?id=51525
make 23k V3.80 V3.81 1,257 Using -r produces wrong output http://savannah.gnu.org/bugs/?20006
gawk 37k V3.1.0 V3.1.1 897 Use of strtonum causes abort https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=159279
diff 20k V2.8.1 V2.9 373 Adds additional newline https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=577832

that work on the LLVM/KLEE platform. We use the Yices

SMT solver [10] to implement the computation of UNSAT

cores. During our experiments, we have evaluated the failure
explanation capability of our method and compared it with

two existing techniques: the classic delta debugging (DD) [1]

and a recent improvement called augmented delta debugging
(ADD) [2] in the same tool.
Our experimental evaluation was designed to answer the

following research questions:

1) How accurately can our new method localize the set

of code changes responsible for the manifested failure?

Specifically, we want to know (a) whether the faulty code
changes will be missed, and if the answer is no, then (b)

whether the faulty code changes will be buried in a large
number of irrelevant code changes.

2) How scalable is our new method in handling real ap-

plications? Compared to existing methods such as DD
and ADD, which use dynamic analysis but not semantic

analysis, our use of the SMT solver may bring some

overhead but may also reduce the number of redundant
tests. We want to know if our method has a good overall

runtime performance.

We conducted experiments on seven widely used Linux

applications such as find, bc, make, gawk, and diff. Each
application has tens of thousands of lines of C code and

hundreds of code changes committed between the correct and
buggy versions. Table I shows their characteristics, including

the name, the number of lines of code, the versions of the

correct and buggy programs, a description of the error, and the
website on which the bug was reported. By studying the bug

reports and patches proposed by the developers, we identified

the minimal set of faulty code changes responsible for each
failure and understood how they triggered the failure. Then, we

ran our tool on these benchmarks and compared the results of

the following three methods: DD, ADD, and AFTER. All the
experiments were conducted on a computer with a 2.66GHz

Intel dual core CPU and 4 GB RAM.

A. Accuracy of the Failure Explanation

In computer aided debugging, we generally expect the

analysis tool to provide only hints as to where the faulty code
changes are and then rely on the developers to identify the

root cause from the reported changes. Therefore, the quality
of a fault explanation method is evaluated using the following

criteria: (a) whether the faulty code changes are included in

the set of reported changes, and if the answer to the previous
question is yes, then (b) whether the faulty code changes are

buried in a large number of irrelevant ones.

To compare the performance of different methods, for each

benchmark and each method, we classified the result into one

of the following three categories:

• Matched, meaning that the reported code changes
matched the actual bug fixes provided by the developers.

In this case, the developers proposed to either revert these

code changes or revise them in order to fix the reported
bug.

• Missed, meaning that reverting the code changes would

not avoid the failure, or merely dodge it since a repaired
program simply chose a different branch and could no

longer reach the buggy code. In this case, the result is

not helpful to debugging.
• Partial, meaning that reverting the code changes would

make the failure disappear, but the developers have de-

cided that these are necessary changes. Instead, other
parts of the code should be revised to accommo-

date these changes. For example, in the code snip-
pet a=2;b=3;assert(a+b==5); changing b=3 to b=2

would cause an assertion failure. Although b=2 is the

actual root cause of this failure, the developer may decide
that the fix should be to revise a=2 to a=3.

Table II shows the results of comparing the code changes
returned by the three methods. Columns 1 and 2 show the

name of the benchmark and the total number of code changes

between the correct and buggy versions. Column 3 shows
the number of code changes localized by DD. Column 4

shows whether the root cause is included in the reported ∆.
Columns 5-6 show the result of ADD and Columns 7-8 show

the result of AFTER in the same format. Column 9 shows

the actually faulty code changes for each benchmark program,
obtained by our inspection of the software code and comments

from the developers.

The results in Table II indicate that our method is more

accurate in localizing the faulty code changes. In all cases,

the changes localized by AFTER include the actual bug fixes
provided by the developers. In contrast, ADD missed the

actual bug in find-a, and both DD and ADD reported partial

results on diff. Furthermore, the false positives of AFTER are
significantly fewer than the other two methods. On average,

among the 516.8 code changes between the two versions, our

method will report only 2.4 code changes, among which 1.7
are the actual faulty code changes.

B. Comparing the Runtime Performance

Our new method relies on a synergistic analysis framework

that leverages both the trial-and-error style dynamic analysis
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TABLE II
RELEVANT CODE CHANGES COMPUTED BY DD, ADD, AND AFTER.

Name #Changes
DD [1] ADD [2] AFTER Actual

∆ Match ∆ Match ∆ Match ∆

find-a 71 10 yes 1 missed 2 yes 2
find-b 243 108 yes 6 yes 5 yes 2
find-c 243 2 yes 2 yes 1 yes 1
bc 534 1 yes 1 yes 1 yes 1
make 1,257 129 yes 63 yes 6 yes 4
gawk 897 1 yes 1 yes 1 yes 1
diff 373 1 partial 1 partial 1 yes 1

Avg. 516.8 36.0 – 10.7 – 2.4 – 1.7

TABLE III
COMPARING THE RUNTIME PERFORMANCE OF DD, ADD, AND AFTER.

Name
DD [1] ADD [2] AFTER Speedup

#Test time(s) #Test time(s) #Test time(s) #S1 #S2

find-a 158 82 34 17 264 125 0.7X 0.1X
find-b 1,161 1,199 35 61 223 321 3.7X 0.2X
find-c 30 37 6 10 32 39 0.9X 0.3X
bc 486 287 29 25 1 12 23.9X 2.1X
make 2,368 7,640 526 1,833 257 946 8.1X 1.9X
gawk 638 4,112 7 73 1 5 822.4X 14.6X
diff 376 522 35 45 3 31 16.8X 1.5X

Avg. – 1,983 – 295 – 211 9.4X 1.4X

(which is similar to DD and ADD) and the SMT solver based
semantic analysis. Therefore, a natural question is whether

the use of the SMT solver would slow down the method. To
answer this question, we compared the runtime performance

of the three methods. Table III shows the result. Columns 2-

7 compare the number of test runs explored by the dynamic
analysis component of each method, and the total execution

time. Columns 8 and 9 show the speedup of our new method,

AFTER, over the other two methods. Specifically, we define
#S1 = #TimeDD

#TimeAFTER
and #S2 = #TimeADD

#TimeAFTER
.

The result in Table III shows that although AFTER spends

additional time on the semantic analysis, whereas the other
two methods do not, the runtime overhead often is more

than compensated by the smaller number of test runs needed.

On average, our method is 9.4 times faster than DD and
1.4 times faster than ADD. The use of semantic analysis

can drastically reduce the number of re-executions needed by

dynamic analysis. This is especially important for programs
where the code changes are far away from the manifested

failures, for which re-execution takes a long time.

C. Statistics of our Synergistic Analysis

Recall that our method has two additional features that

DD and ADD do not have. The first one is the capability
of computing ∆Aux, the set of code changes that must be

reverted together with ∆root to make it compile. The second

one is the capability of reporting a tree of causal event chains
to explain how the faulty code changes lead to the failure.

Table IV shows the statistics of running our method on the
benchmark programs. We break down∆Total, the total number

of code changes reported by our tool, into two parts. That
is, ∆Total = ∆Aux + ∆Root, where ∆Aux is the number of

addition changes that must be reverted to make the program

compile, and ∆Root is the set of changes responsible for
the failure. One main advantage of our method over existing

methods is the capability of computing ∆Aux. We also report,

TABLE IV
STATISTICS OF RUNNING AFTER ON THE BENCHMARK PROGRAMS.

Name #Changes
AFTER

∆Total ∆Aux ∆Root SMT-time(s) #causes

find-a 71 16 14 2 5 2
find-b 243 5 0 5 72 6
find-c 243 2 1 1 3 1
bc 534 1 0 1 2 1
make 1,257 31 25 6 135 7
gawk 897 1 0 1 1 1
diff 373 1 0 1 27 5

Avg. 516.8 8.1 5.7 2.4 35.0 3

--- diffutils-2.8/src/io.c
+++ diffutils-2.9.1/src/io.c
@@ -664,2 +650,2 @@
- for (; p0 != beg0; p0--, p1--)
- if (*p0 != *p1)
+ while (p0 != beg0)
+ if (*--p0 != *--p1)

Fig. 11. The code change of program diff reported by DD, ADD, and AFTER.

among the total execution time, how many seconds are spent

on running the SMT solver based semantic analysis.

The last column shows the number of causes (causal
chains of events) that link the faulty code changes to the

manifested failure. The causes computed by our SMT solver

based analysis can help the developers understand the causality
relationship between the code changes and the failure – it is

the main reason why we call our approach fault explanation

instead of fault localization.

Besides establishing the causality relationship, the reported
tree of causes can provide hints to programmers on how to fix

the faulty program. Consider the diff benchmark program,

where all three methods reported the code change in Fig. 11.
However, the result reported by AFTER is a match whereas

the results reported by the other two methods are partial, for

the following reasons. First, reverting the change in Fig. 11
can indeed make the failure go away. However, based on

the comments from the developers, this change itself was not
faulty since it was introduced to fix a bug appeared in an earlier

version (http://git.savannah.gnu.org/cgit/diffutils.git/commit/?

id=58d0483b621792959a485876aee05d799b6470de), and the
bug eventually was fixed by adding another condition to

catch and correct the affected variable. Our method correctly

explained this failure because, in addition to this faulty change,
our method also reported 5 causes, which formed a chain

of propagation. The actual bug fix proposed by the devel-

opers was on our causality chain (https://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=577832).

Consider another example, make, which is the benchmark

application on which DD and ADD reported significantly

more code changes than AFTER. For this example, the bug
fix provided by the developers is to remove the check of

f→is_target shown in Fig. 12. Although this change is
also reported by by DD and ADD – which earns them a

match – this faulty code change is buried among 129 and 63

irrelevant changes, respectively. In practice, it would be too
time-consuming for the developers to sift through such large

numbers of potential code changes. In contrast, our method
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--- make-3.80/implicit.c
+++ make-3.81/implicit.c
@@ -402 +698,2 @@
- if (lookup_file (p) != 0
+ /* @@ dep->changed check is disabled. */
+ if (((f = lookup_file (name)) != 0

&& f->is_target)

Fig. 12. Actual bug fix reported by AFTER for the make benchmark.

reported only 6 code changes, together with 25 auxiliary code

changes to make the program compile successfully.

VI. RELATED WORK

There is a large body of work on debugging evolving pro-
grams based on the trial-and-error style analysis as pioneered

by Zeller et al. [1], [17], [18]. The approach, commonly
known as delta debugging (DD), has been combined with

other techniques including execution coverage (also known as

the augmented delta debugging (ADD) [2]), observation-based
slicing [19], dual slicing [20] and hierarchical information [21]

to improve precision. However, these methods rely on dynamic

analysis only, whereas in our synergistic analysis framework,
we also use SMT based semantic analysis to compute causality

chains and provide guidance to the dynamic analysis.

Another line of influential work on debugging evolving
programs is based on symbolic techniques. For example, the

DARWIN [14] method relies on the assumption that the
path conditions of buggy and correct executions often differ

from each other. By comparing the difference, DARWIN is

effective in finding control logic errors. However, it is less
effective in finding errors in other parts of the code such

as the assignments, since they do not alter the control flow.

Banerjee et al. [15] proposes a remedial method for DARWIN
by comparing the erroneous instructions against a golden

program. However, neither method is based on the synergistic

application of both dynamic analysis and semantic analysis.
Furthermore, neither provides the tree-like explanation of the

fault propagation as in our method.
The concept of as correct as the previous version has

become popular in the subfield of regression verification [22],

[23]. Although these works do not directly focus on explaining
failed regression tests as in this paper, they complement our

work at the high level.

Dynamic slicing [13], together with many variations [12],
[24], is another widely used error triaging technique. However,

it may not be able to remove many of the semantically irrele-
vant program statements, thereby limiting its usefulness [16].

Therefore, in practice, slicing typically is used as an auxiliary

technique to complement other methods in automated debug-
ging. For example, the problem tackled in this paper cannot be

solved by simply combining dynamic slicing with a weakest

precondition computation over the backward slice – the use
of re-execution based analysis is also crucial to identify the

actual causality relationship between the recent code changes

and the observed failure.
BugAssist [25] is a Boolean SAT solver based tool for local-

izing potentially faulty program statements in a buggy C pro-
grams. The tool leverages a SAT solver’s capability to compute

minimal unsatisfiability core in the CBMC verification tool.

Ermis et al. [26], [27] propose a Graig interpolant [28] based
method for computing error invariants, which are then used

to identify portions of a faulty trace that are irrelevant. There

are also other fault localization methods based on weakest
precondition [29], [30], [31] and inductive interpolant [32]

to explain the encountered failure. However, none of these
methods is geared toward regression testing, and as such, they

do not utilize the code changes between the correct and buggy

versions.
There are bug triaging methods based on comparing the

passing and failing execution traces [3], [4], [5], [6], [33],

[34]. For a given failing execution, they find passing exe-
cutions that are as similar to the failing one as possible.

Then, they identify the difference between passing and failing
executions and present them as an explanation of the failure.

Methods based on the use of dynamically learned likely

program invariants [35] can also be efficient for catching the
differences between failing and passing executions. However,

the effectiveness of these methods is limited by the quality

and sometimes the availability of the test suite.
Fault localization methods based on identifying anomalous

events in program executions [36], [37], [38] rely on the
assumption that rarely occurring events are likely faulty. A

representative tool that falls in this category is RADAR [37],

[38], which derives multiple models from the base version
of the program and compares them with the failed execution

to identify a chain of suspicious anomalous events. Such

techniques differ from our method in that they do not rely on
semantic analysis and therefore can only discover correlation

between the anomalous events and the failure, but not the

causal relationship. Nevertheless, they are complementary to
our method in that the anomalous events can be used by our

method to further prune the irrelevant predicates.

VII. CONCLUSIONS

We have presented a new synergistic analysis method for

localizing faulty code changes in the context of regression
testing and explaining how these code changes lead to the man-

ifested failure. The method relies on an iterative framework

that leverages dynamic analysis to identify the correlation
between the code changes and the failure, and also leverages

semantic analysis to identify the causality relationship between

them. Our experiments on widely used Linux applications
show that the new method is effective in localizing relevant

code changes in practice. Furthermore, our method can report
a tree of causes to help explain the chain of fault propagation

events from the code changes to the manifested failure.
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method for debugging,” in ACM SIGSOFT Symposium on Foundations
of Software Engineering, 1999, pp. 303–321.

[13] B. Korel and J. Laski, “Dynamic program slicing,” Inf. Process. Lett.,
vol. 29, no. 3, pp. 155–163, Oct. 1988.

[14] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani, “Darwin: an ap-
proach for debugging evolving programs,” in ACM SIGSOFT Symposium
on Foundations of Software Engineering, 2009, pp. 33–42.

[15] A. Banerjee, A. Roychoudhury, J. A. Harlie, and Z. Liang, “Golden im-
plementation driven software debugging,” in ACM SIGSOFT Symposium
on Foundations of Software Engineering, 2010, pp. 177–186.

[16] F. Tip, “A survey of program slicing techniques,” J. of programming
languages, vol. 3, pp. 121–189, 1995.

[17] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Trans. Softw. Eng., vol. 28, 2002.

[18] A. Zeller, “Isolating cause-effect chains from computer programs,” in
ACM SIGSOFT Symposium on Foundations of Software Engineering,
2002, pp. 1–10.

[19] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo,
“Observation-based slicing,” Department of Computer Science, Univer-
sity College London, Tech. Rep. RN/13/13, 2013.

[20] W. N. Sumner and X. Zhang, “Comparative causality: Explaining
the differences between executions,” in International Conference on
Software Engineering, 2013, pp. 272–281.

[21] G. Misherghi and Z. Su, “HDD: hierarchical delta debugging,” in
International Conference on Software Engineering, 2006, pp. 142–151.
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